Membrane-Anchored HIV-1 N-Heptad Repeat Peptides Are Highly Potent Cell Fusion Inhibitors via an Altered Mode of Action
نویسندگان
چکیده
Peptide inhibitors derived from HIV-gp41 envelope protein play a pivotal role in deciphering the molecular mechanism of HIV-cell fusion. According to accepted models, N-heptad repeat (NHR) peptides can bind two targets in an intermediate fusion conformation, thereby inhibiting progression of the fusion process. In both cases the orientation towards the endogenous intermediate conformation should be important. To test this, we anchored NHR to the cell membrane by conjugating fatty acids with increasing lengths to the N- or C-terminus of N36, as well as to two known N36 mutants; one that cannot bind C-heptad repeat (CHR) but can bind NHR (N36 MUTe,g), and the second cannot bind to either NHR or CHR (N36 MUTa,d). Importantly, the IC(50) increased up to 100-fold in a lipopeptide-dependent manner. However, no preferred directionality was observed for the wild type derived lipopeptides, suggesting a planar orientation of the peptides as well as the endogenous NHR region on the cell membrane. Furthermore, based on: (i) specialized analysis of the inhibition curves, (ii) the finding that N36 conjugates reside more on the target cells that occupy the receptors, and (iii) the finding that N36 MUTe,g acts as a monomer both in its soluble form and when anchored to the cell membrane, we suggest that anchoring N36 to the cell changes the inhibitory mode from a trimer which can target both the endogenous NHR and CHR regions, to mainly monomeric lipopetides that target primarily the internal NHR. Besides shedding light on the mode of action of HIV-cell fusion, the similarity between functional regions in the envelopes of other viruses suggests a new approach for developing potent HIV-1 inhibitors.
منابع مشابه
Membrane-anchored inhibitory peptides capture human immunodeficiency virus type 1 gp41 conformations that engage the target membrane prior to fusion.
Soluble peptides derived from the C-terminal heptad repeat domain of human immunodeficiency virus type 1 (HIV-1) gp41 are potent inhibitors of HIV-1 entry and gp41-induced fusion. Target membrane-anchored variants of these peptides have been shown to retain inhibitory activity. Both soluble and membrane-anchored C peptides (MACs) are thought to block fusion by binding to the N-terminal coiled c...
متن کاملSynergistic inhibition of HIV-1 envelope-mediated membrane fusion by inhibitors targeting the N and C-terminal heptad repeats of gp41.
The human immunodeficiency virus type-1 (HIV-1) envelope (Env) proteins that mediate membrane fusion represent a major target for the development of new AIDS therapies. Three classes of Env-mediated membrane fusion inhibitors have been described that specifically target the pre-hairpin intermediate conformation of gp41. Class 2 inhibitors bind to the C-terminal heptad repeat (C-HR) of gp41. The...
متن کاملThe M-T hook structure increases the potency of HIV-1 fusion inhibitor sifuvirtide and overcomes drug resistance.
OBJECTIVES Peptides derived from the C-terminal heptad repeat (CHR) of HIV-1 gp41 are potent fusion inhibitors. We have recently demonstrated that the unique M-T hook structure preceding the pocket-binding motif of CHR peptide-based inhibitors can greatly improve their antiviral activity. In this study, we applied the M-T hook structure to optimize sifuvirtide (SFT), a potent CHR-derived inhibi...
متن کاملSingle-chain protein mimetics of the N-terminal heptad-repeat region of gp41 with potential as anti-HIV-1 drugs.
During HIV-1 fusion to the host cell membrane, the N-terminal heptad repeat (NHR) and the C-terminal heptad repeat (CHR) of the envelope subunit gp41 become transiently exposed and accessible to fusion inhibitors or Abs. In this process, the NHR region adopts a trimeric coiled-coil conformation that can be a target for therapeutic intervention. Here, we present an approach to rationally design ...
متن کاملA short region upstream of the yeast vacuolar Qa-SNARE heptad-repeats promotes membrane fusion through enhanced SNARE complex assembly
Whereas SNARE (soluble N -ethylmaleimide-sensitive factor attachment protein receptor) heptad-repeats are well studied, SNAREs also have upstream N-domains of indeterminate function. The assembly of yeast vacuolar SNAREs into complexes for fusion can be studied in chemically defined reactions. Complementary proteoliposomes bearing a Rab:GTP and either the vacuolar R-SNARE or one of the three in...
متن کامل